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Goal of this series of talks.

The goal of these talks is threefold

1 Category theory aimed at “free formulas” and their combinatorics

2 How to construct free objects

1 w.r.t. a functor with - at least - two combinatorial applications:

1 the two routes to reach the free algebra
2 alphabets interpolating between commutative and non commutative

worlds

2 without functor: sums, tensor and free products
3 w.r.t. a diagram: limits

3 Representation theory.

4 MRS factorisation: A local system of coordinates for Hausdorff groups and
fine tuning between analysis and algebra.

5 This scope is a continent and a long route, let us, today, walk part of the
way together.
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Disclaimer. — The contents of these notes are by no means intended to
be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.
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CCRT[24] On the rôle of local analysis in the computation
of polylogarithms and harmonic sums II.

1 In the preceding weeks, we have considered the MRS factorization which is
one of our precious jewels.

DX :=
∑
w∈X∗

w ⊗ w =
∑
w∈X∗

Sw ⊗ Pw =

↘∏
l∈LynX

exp(Sl ⊗ Pl) (1)

2 Last week, we have seen how to extend the indexation of Polylogarithmic
functions and Harmonic sums.

3 But Polylogarithmic functions are ruled out by shuffles and Harmonic sums
by stuffle or Hadamard products.

4 We must have a tool to state identity (1) in the context of stuffle products
or, more generally, deformed shuffle products (this deformation is, indeed, a
perturbation).
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Introduction.

5 We have explained, firstly how to extend polylogarithms

Li(s1, . . . sr ) =
∑

n1>n2>...nr>0

zn1

ns1
1 . . . n

sr
r

for |z | < 1 (2)

They were a priori coded by lists (s1, . . . sr ) but, when si ∈ N+, they admit
an iterated integral representation and are better coded by words with
letters in X = {x0, x1}. We will use the one-to-one correspondences.

(s1, . . . , sr ) ∈ Nr
+ ↔ x s1−1

0 x1 . . . x
sr−1
0 x1 ∈ X ∗x1 ↔ ys1 . . . ysr ∈ Y ∗ (3)

Li(s)[z ] is Jonquière and, for <(s) > 1, one has Li(s)[1] = ζ(s)

Completed by Li(xn0 ) = logn(z)
n! this provides a family of C-independant

functions (linearly) admitting an analytic continuation on the cleft

plane C \ (]−∞, 0] ∪ [1,+∞[) or ˜C \ {0, 1}.
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Introduction: Recap of the facts.

6 Starting from ζ(s) =
∑

n≥1
1
ns (<(s) > 1)

7 and the multiplication of two of these

ζ(s1)ζ(s2) =
∑

n1,n2≥1

1

ns1
1 n

s2
2

= ζ(s1, s2) + ζ(s1 + s2) + ζ(s2, s1)

8 then several of them, then mixing this with classical polylogarithms defined,
for k ≥ 1, |z | < 1, by

− log(1− z) = Li1 =
∑
n≥1

zn

n1
; Li2 =

∑
n≥1

zn

n2
; . . . ; Lik(z) :=

∑
n≥1

zn

nk

9 We obtained quantities called polylogarithms

Liys1 ...ysk (z) :=
∑

n1>...>nk≥1

zn1

ns1
1 . . . n

sk
k

; |z | < 1
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Introduction: Recap of the facts/2

They satisfy the recursion (ladder stepdown)

z
d

dz
Liys1 ...ysk = Liys1−1...ysk

if s1 > 1

(1− z)
d

dz
Liy1ys2 ...ysk

= Liys2 ...ysk if k > 1 (4)

which, with si ∈ N≥1, k ≥ 1, ends at the “seed”

Liy1 (z) = Li1(z) = log(
1

1− z
) (5)

For the next step, we code the moves z d
dz (resp. (1− z) d

dz ) - or more

precisely sections
∫ z

0
f (s)
s ds (resp.

∫ z

0
f (s)
1−s ds) - with x0 (resp. x1).
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Tree of outputs (so far).

1X∗

x0

x2
0

x3
0x1x

2
0

x1x0

x0x1x0x2
1x0

x1

x0x1

x2
0x1x1x0x1

x2
1

x0x
2
1x3

1

Some coefficients with X = {x0, x1}; u0(z) = 1
z

; u1(z) = 1
1−z

, ∗0 = 0

〈S | xn1 〉 =
(−log(1− z))n

n!
; 〈S | x0x1〉 = Li2(z)︸ ︷︷ ︸

cl.not.

= Lix0x1
(z) =

∑
n≥1

zn

n2

〈S | x2
0 x1〉 = Li3(z)︸ ︷︷ ︸

cl.not.

= Li
x2
0
x1

(z) =
∑
n≥1

zn

n3
; 〈S | x1x0x1〉 = Lix1x0x1

(z) = Li[1,2](z) =
∑

n1>n2≥1

zn1

n1n
2
2

〈S | x0x
2
1 〉 = Li

x0x
2
1

(z) = Li[2,1](z) =
∑

n1>n2≥1

zn1

n2
1n2

; above “cl. not.” stands for “classical notation”
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Introduction: Review of the facts/3

Calling S the prospective generating series

S =
∑
w∈X∗

〈S | w〉︸ ︷︷ ︸
∈H(Ω)

w ; X = {x0, x1} (6)

V. Drinfel’d [1] indirectly proposed a way to complete the tree:{
d(S) = ( x0

z + x1

1−z ).S (NCDE )

lim z→0
z∈Ω

S(z)e−x0log(z) = 1H(Ω)〈〈X〉〉 (Asympt. Init. Cond .)
(7)

from the general theory, this system has a unique solution which is precisely
Li (called G0 in [1]) ; S 7→ d(S) being the term by term derivation of the
coefficients.

Minh [2] indicated a way to effectively compute this solution through
(improper) iterated integrals (see also [13]).
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Explicit construction of Drinfeld’s G0.

Given a word w , we note |w |x1 the number of occurrences of x1 within w

αz
0(w) =


1Ω if w = 1X∗∫ z

0 α
s
0(u) ds

1−s if w = x1u∫ z
1 α

s
0(u)dss if w = x0u and |u|x1 = 0 (w ∈ x∗0 )∫ z

0 α
s
0(u)dss if w = x0u and |u|x1 > 0 (w ∈ x0X

∗x1x
∗
0 )

The third line of this recursion implies

αz
0(xn0 ) =

log(z)n

n!

one can check that (a) all the integrals (although improper for the fourth
line) are well defined (b) the series S =

∑
w∈X∗ α

z
0(w)w is Li (G0 in [1]).
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Complete tree of outputs.

1X∗

x0

x2
0

x3
0x1x

2
0

x1x0

x0x1x0x2
1x0

x1

x0x1

x2
0x1x1x0x1

x2
1

x0x
2
1x3

1

As an example, we compute some coefficients

〈Li | xn0 〉 =
log(z)n

n!
; 〈Li | xn1 〉 =

(−log(1− z))n

n!

〈Li | x0x1〉 = Li2(z) =
∑
n≥1

zn

n2
; 〈Li | x1x0〉 = 〈Li | x1 x x0 − x0x1〉(z)

〈Li | x2
0 x1〉 = Li3(z) =

∑
n≥1

zn

n3
; 〈Li | x1x0〉 = (−log(1− z))log(z)− Li2(z)

〈Li | x r−1
0 x1〉 = Lir (z) =

∑
n≥1

zn

nr
; 〈Li | x2

1 x0〉 = 〈Li |
1

2
(x1 x x1 x x0)− (x1 x x0x1) + x0x

2
1 〉

12 / 73



13/73

Li From a NCDE.

The generating series S =
∑

w∈X∗ Li(w) satisfies (and is unique to do so)
d(S) = ( x0

z + x1
1−z ).S

lim z→0
z∈Ω

S(z)e−x0log(z) = 1H(Ω)〈〈X 〉〉

(8)

with X = {x0, x1}. This is, up to the sign of x1, the solution G0 of
Drinfel’d [13] for KZ3a. We define this unique solution as Li. All Liw are
C- and even C(z)-linearly independant (see CAP 17 Linear independance
without monodromy [24]).

aIn fact, the path from KZ3 to these equations is done through a
counter-homogenization (see Vu’s forthcoming talks).
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Domain of Li (global, definition)

In order to extend indexation of Li to series, we define Dom(Li ; Ω) (or
Dom(Li)) if the context is clear) as the set of series S =

∑
n≥0 Sn

(decomposition by homogeneous components) such that
∑

n≥0 LiSn(z)
converges unconditionally for compact convergence in Ω. One sets

LiS(z) :=
∑
n≥0

LiSn(z) (9)

Starting the ladder

(C〈X 〉, x , 1X∗) C{Liw}w∈X∗

(C〈X 〉, x , 1X∗)[x∗0 , (−x0)∗, x∗1 ] CZ{Liw}w∈X∗

Li•

Li
(1)
•

Examples

Lix∗0 (z) = z , Lix∗1 (z) = (1− z)−1, Liαx∗0 +βx∗1
(z) = zα(1− z)−β
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Main difference between αz
z0

and αz
0.

6 Here, we still work with
Ω = Cr (]−∞, 0] ∪ [1,+∞[) and u0 = 1/z , u1 = 1/(1− z)

7 αz
z0
, αz

0 : X ∗ H(Ω) are both shuffle characters (see below) but
they satisfy different growth conditions.

8 With αz
z0

, (z0 ∈ Ω). — Let us denote K(Ω) the set of compact
subsets of Ω. One can show that, for all K ∈ K(Ω), there exists
MK > 0 s.t.

(∀w ∈ X+)( ||〈αz
z0
| w〉||K ≤ MK

1

(|w | − 1)!
) (10)

9 This entails that, given a rational series T =
∑

n≥0 Tn (where
Tn =

∑
|w |=n〈T | w〉), the series, for all K ∈ K(Ω)∑

n≥0

||〈αz
z0
| Tn〉||K < +∞

10 We will say that T ∈ Dom(αz
z0

) and set αz
z0

(T ) =
∑

n≥0〈αz
z0
| Tn〉.
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Main difference between αz
z0

and αz
0/2

11 In fact, αz
0 satisfies no condition of the type (10) because, with x∗0x1

(Jonquière branch), we can see that
1 for n ≥ 1, (x∗0 x1)n = xn−1

0 x1, then

〈Li(z) | xn−1
0 x1〉 = 〈αz

z0
| xn−1

0 x1〉 = Jn(z) =
∑
k≥1

zk

kn
(11)

2 The series
∑

n≥0 Jn does not converge (even pointwise) on ]0, 1[
because,

x ∈]0, 1[=⇒ Jn(x) ≥ x

3 So, what can be salvaged ? → in fact, conditions (growth or other)
implying absolute convergence at the level of words is hopeless because
of restriction and we would like to preserve

Li(x∗0 ) = z ; Li(x∗1 ) = 1/(1− z) ; Li(S xT ) = Li(S).Li(T ) (12)

and then Li
(
(x0 + x1)∗

)
= z/(1− z)
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Main difference between αz
z0

and αz
0/3

12 Then, we must have a criterium (for admitting a series in Dom(Li))

13 Fortunately H(Ω) shares with finite dimensional spaces the following
property

Unconditional convergence⇐⇒ Absolute convergence (13)

14 Unconditional convergence for a series
∑

n≥0 un means
convergence “independent of the order” i.e. that

∑
n≥0 uσ(n)

converges whatever σ ∈ SN.

15 Absolute convergence is wrt the continuous seminorms of the space.

16 Time is ripe now to speak of the standard topology of H(Ω).

17 For K ∈ K(Ω), we introduce the seminorm (norm if Ω is connected
and K ◦ 6= ∅)

||f ||K = sup
z∈K
|f (z)|
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Initial topologies.

18 We now use a very very general construction, well suited both for
series and holomorphic functions (and many other situations), that of
initial topologies (see [34] and, for a detailed construction [6], Ch1
§2.3)

C (Ki ;C)

X H(Ω) C (Kj ;C)

C (Kr ;C)

g

resKi ◦g

resKj

resKr

resKi

19 So H(Ω) is a locally convex TVS whose topology is defined by the
family of seminorms (|| ||K )K∈K(Ω).
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Topology of H(Ω) cont’d.

18 In fact, every Ω ⊂ C is σ-compact, this means that one can construct
a sequence (Kn)n≥1 of compacts i.e. (∀K ∈ K(Ω))(∃n ≥ 1)(K ⊂ Kn)
therefore H(Ω) is a complete (hence closed) subset of the product
Πn≥1 C(Kn;C) (for the topology on the cube, see a next CCRT).

Kn = {z ∈ Ω | d(z , z0) ≤ n and d(z ,Cr Ω) ≥ 1

n
}.

z0

19 We will see more (step-by-step and starting from scratch) on the
topology of the cube and separability in the CCRT devoted to
convergence questions).
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Domain of Li.

18 If Ω 6= ∅, H(Ω) is not normable because, there are two continuous
operators

a† : f 7→ z .f ; a : f 7→ d

dz
f

such that [a, a†] = IdH(Ω) (Hint Compute ada(eta
†
)).

19 H(Ω) has property (13) (nuclearity).

20 This leads us to the following

Definition

Let T ∈ H(Ω)〈〈X 〉〉, we define (with [S ]n :=
∑
|w |=n〈S | w〉w)

Dom(T ) = {S ∈ C〈〈X 〉〉 |
∑
n≥0

〈T | [S ]n〉 cv inconditionally} (14)

If S ∈ Dom(T ), we set 〈T | S〉 :=
∑

n≥0〈T | [S ]n〉.
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Shuffle properties and domain of Li.

18 In the case when T is a shuffle character, we have

Theorem (GD, Quoc Huan Ngô, HNM [14] for Li)

Let T ∈ H(Ω)〈〈X 〉〉 such that

〈T | : P 7→ 〈T | P〉 (C〈X 〉 → H(Ω)) (15)

is a shuffle character. then
i) Dom(T ) is a shuffle subalgebra of (C〈〈X 〉〉, x , 1X∗).
ii) 〈T | S1 xS2〉 = 〈T | S1〉〈T | S2〉 i.e. S 7→ 〈T | S〉 is a shuffle character
of (Dom(T ), x , 1X∗) that we will still denote 〈T | .
iii) Then Im(〈T | ) is a (unital) subalgebra of H(Ω).
iv) In particular (see infra for an algebraic proof), z = Li(x∗0 ) and then,
C[z ] ⊂ Im(Dom(Li)).
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Open problems and some solved.

19 Do we have H(Ω) = Im(Dom(Li)) (= Im(Li)) ? (in other words does
it exist inaccessible f ∈ H(Ω) ?)

20 If z0 /∈ Ω, does 1/(z − z0) belong to Im(Li) ? (z0 ∈ Ω and z0 /∈ Ω)

21 (Solved) Are there non-rational series in Dom(Li) ? (answer yes)

22 (Solved) Is Crat〈〈X 〉〉 contained in Dom(Li) (answer no)

23 What is the topological complexity of Dom(Li) in the Borel
hierarchy (Addison notations, see [25] for details and use the
convenient framework of polish spaces [7], ch IX).

24 Borel hierarchy: We recall that this hierarchy is indexed by ordinals
and defined as follows

1 A set is in Σ0
1 if and only if it is open.

2 A set is in Π0
α if and only if its complement is in Σ0

α.
3 A set A is in Σ0

α for α > 1 if and only if there is a sequence of sets
A1,A2, . . . such that each Ai is in Π0

αi
for some αi < α and A =

⋃
Ai .

4 A set is in ∆0
α if and only if it is both in Σ0

α and in Π0
α.
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Open problems and some solved/2

25 From slide (11), one can remark that the iterated integrals are based on two
integrators, informally defined as

ι1(f ) :=

∫ z

0

f (s)
ds

1− s
; ι0(f ) :=

∫ z

z0

f (s)
ds

s
with z0 ∈ {0, 1} (16)

ι1 is defined and continous on H(Ω) and ι0 is defined on spanC{Liw}w∈X∗a
(context-dependent) and not continuous [14] on this set (see below).
Problem What is the Baire class of ι0 ?

26 Recall that K(Ω) admits a cofinal sequence (Kn)n∈N of compacts i.e.
(∀K ∈ K(Ω))(∃n ∈ N)(K ⊂ Kn) therefore H(Ω) is a complete (hence
closed) subset of the product Πn∈NC(Kn;C) .

27 Recall that (see [14] and slide Sl.18)

Kn = {z ∈ Ω | d(z , z0) ≤ n and d(z ,Cr Ω) ≥ 1

n
}.

aIt can be a little bit extended, see our paper [14].
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Properties.

Proposition

With this definition, we have

1 Dom(Li) is a shuffle subalgebra of C〈〈X 〉〉 and so is
Domrat(Li) := Dom(Li) ∩ Crat〈〈X 〉〉

2 For S ,T ∈ Dom(Li), we have
LiSxT = LiS .LiT

Examples and counterexamples

For |t| < 1, one has (tx0)∗x1 ∈ Dom(Li ,D) (D being the open unit slit
disc and Dom(Li ,D) defined similarly), whereas x∗0x1 /∈ Dom(Li ,D).
Indeed, we have to examine the convergence of

∑
n≥0 Lixn0 x1(z), but, for

z ∈]0, 1[, one has 0 < z < Lixn0 x1(z) ∈ R and therefore, for these values∑
n≥0 Lixn0 x1(z) = +∞. Contrariwise one can show that, for |t| < 1,

Li(tx0)∗x1
(z) =

∑
n≥1

zn

n−t
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Passing to harmonic sums Hw , w ∈ Y ∗.

Polylogarithms having a removable singularity at zero

The following proposition helps us characterize their indices.

Proposition

Let f (z) = 〈Li | P〉 =
∑

w∈X∗〈P | w〉Liw . The following conditions are
equivalent

i) f can be analytically extended around zero

ii) P ∈ C〈X 〉x1 ⊕ C.1X∗

We recall the expansion (for w ∈ X ∗x1 t {1X∗}, |z | < 1)

Liw (z)

1− z
=
∑
N≥0

HπY (w)(N) zN (17)
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Global and local domains.

This proposition and the lemma lead us to the following definitions.

1 Global domains.–
Let ∅ 6= Ω ⊂ B̃ (with B = Cr {0, 1}), we define DomΩ(Li) ⊂ C〈〈X 〉〉 to be
the set of series S =

∑
n≥0 Sn (with Sn =

∑
|w |=n〈S | w〉w each

homogeneous component) such that
∑

n∈N LiSn is unconditionally
convergent for the compact convergence (UCC) [27].
As examples, we have Ω1, the doubly cleft plane then
Dom(Li) := DomΩ1 (Li) or Ω2 = B̃

2 Local domains around zero (fit with H-theory).–
Here, we consider series S ∈ (C〈〈X 〉〉x1 ⊕ C 1X∗) (i.e. supp(S) ∩ Xx0 = ∅).
We consider radii 0 < R ≤ 1, the corresponding open discs
DR = {z ∈ C| |z | < R} and define

DomR(Li) := {S = Σn≥0 Sn ∈ (C〈〈X 〉〉x1 ⊕ C1Ω)|
∑
n∈N

LiSn (UCC) in DR}

Domloc(Li) := ∪0<R≤1DomR(Li).
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Local domains.

28 Local domains: the domain of convergence of Liw , w ∈ X ∗x1 is
Cr (]−∞,−1] ∪ [1,+∞[) and these functions are Taylor expandable
around zero. With S =

∑
n≥0 Sn ∈ C〈〈X 〉〉, we study the inconditional

convergence of
∑

n≥0 LiSn(z) within different open disks
(B(0,0)(r)) 0<r<1

x

y

A B

(0, r)
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Properties of the domains.

Theorem A

1 For all ∅ 6= Ω ⊂ B̃, DomΩ(Li) is a shuffle subalgebra of C〈〈X 〉〉 and so
are the DomR(Li).

2 R 7→ DomR(Li) is strictly decreasing for R ∈]0, 1].

3 All DomR(Li) and Domloc(Li) are shuffle subalgebras of C〈〈X 〉〉 and
πY (Domloc(Li)) is a stuffle subalgebra of C〈〈Y 〉〉.

4 Conversely, let T (z) =
∑

N≥0 aNz
N be a Taylor series i.e. such that

lim supN→+∞ |aN |1/N = B < +∞, then the series

S =
∑
N≥0

aN(−(−x1)+)xN (18)

is summable in C〈〈X 〉〉 (with sum in C〈〈x1〉〉) and S ∈ DomR(Li) with
R = 1

B+1 and LiS = T (z).
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Theorem A/2

5 Let S ∈ DomR(Li) and S =
∑

n≥0 Sn (homogeneous decomposition),
we definea N 7→ HπY (S)(N) by

LiS(z)

1− z
=
∑
N≥0

HπY (S)(N)zN . (19)

Moreover, for all r ∈]0,R[, we have∑
n,N≥0

|HπY (Sn)r
N | < +∞, (20)

in particular, for all N ∈ N the series (of complex numbers)∑
n≥0 HπY (Sn)(N) converges absolutely to HπY (S)(N).

aThis definition is compatible with the old one when S is a polynomial.
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Theorem A/3

6 Conversely, let Q ∈ C〈〈Y 〉〉 with Q =
∑

n≥0 Qn (decomposition by
weights), we suppose that it exists r ∈]0, 1] such that∑

n,N≥0

|HQn(N)rN | < +∞ (21)

in particular, for all N ∈ N,
∑

n≥0 HQn(N) = `(N) ∈ C
unconditionally.
Under such circumstances, πX (Q) ∈ Domr (Li) and, for all |z | < r

LiS(z)

1− z
=
∑
N≥0

`(N)zN , (22)
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Insightful fathers.

Figure: Jacques Hadamard and Paul Montel.
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Local domains: morphism properties.

Corollary (of Theorem A)

Let S ,T ∈ Domloc(Li), then

S xT ∈ Domloc(Li), πX (πY (S) πY (T )) ∈ Domloc(Li)

and for all N ≥ 0,

LiSxT = LiS LiT ; Li1X∗ = 1H(Ω), (23)

HπY (S) πY (T )(N) = HπY (S)(N)HπY (T )(N). (24)

LiS(z)

1− z
� LiT (z)

1− z
=

LiπX (πY (S) πY (T ))(z)

1− z
. (25)
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Continuing the ladder

(C〈X 〉, x , 1X∗) C{Liw}w∈X∗

(C〈X 〉, x , 1X∗)[x∗0 , (−x0)∗, x∗1 ] CZ{Liw}w∈X∗

C〈X 〉xCrat〈〈x0〉〉xCrat〈〈x1〉〉 CC{Liw}w∈X∗

C〈X 〉 ⊗C Crat〈〈x0〉〉 ⊗C Crat〈〈x1〉〉

Li•

Li
(1)
•

Li
(2)
•

We have, after a theorem by Leopold Kronecker,

Crat〈〈x〉〉 =
{P

Q

}
P,Q∈C[x]
Q(0)6=0

(26)
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On the right: freeness without monodromy.

Theorem (Deneufchâtel, GHED,Minh & Solomon, 2011 [12])

Let (A, ∂) be a k-commutative associative differential algebra with unit and C be
a differential subfield of A (i.e. ∂(C) ⊂ C). We suppose that k = ker(∂) and that
S ∈ A〈〈X 〉〉 is a solution of the differential equation

d(S) = MS ; 〈S | 1〉 = 1 with M =
∑
x∈X

uxx ∈ C〈〈X 〉〉 (27)

(i.e. M is a homogeneous series of degree 1)
The following conditions are equivalent :

1 The family (〈S | w〉)w∈X∗ of coefficients of S is (linearly) free over C.

2 The family of coefficients (〈S | x〉)x∈X∪{1X∗} is (linearly) free over C.

3 The family (ux)x∈X is such that, for f ∈ C et αx ∈ k

∂(f ) =
∑
x∈X

αxux =⇒ (∀x ∈ X )(αx = 0).
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A useful property.
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Left and then right: the arrow Li(1)
• .

Proposition

i. The family {x∗0 , x∗1} is algebraically independent over (C〈X 〉, x , 1X∗)
within (C〈〈X 〉〉rat, x , 1X∗).

ii. (C〈X 〉, x , 1X∗)[x∗0 , x
∗
1 , (−x0)∗] is a free module over C〈X 〉, the family

{(x∗0 )x k x (x∗1 )x l}(k,l)∈Z×N is a C〈X 〉-basis of it.

iii. As a consequence, {w x (x∗0 )x k x (x∗1 )x l} w∈X∗
(k,l)∈Z×N

is a C-basis of it.

iv. Li
(1)
• is the unique morphism from (C〈X 〉, x , 1X∗)[x∗0 , (−x0)∗, x∗1 ] to
H(Ω) such that

x∗0 → z , (−x0)∗ → z−1 and x∗1 → (1− z)−1

v. Im(Li
(1)
• ) = CZ{Liw}w∈X∗ .

vi. ker(Li
(1)
• ) is the (shuffle) ideal generated by x∗0 x x∗1 − x∗1 + 1X∗ .
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Other combinatorial instances of MRS factorisation.

Shuffle product governs Poly- and Hyper- logarithms, stuffle governs
Harmonic functions and one can see that other forms of perturbated
shuffles govern other types of special functions.
In combinatorics (and computer science), one often uses productsa defined
by recursions on words of the form

ux ϕ1Y ∗ = 1Y ∗ x ϕu = u and
aux ϕbv = a(ux ϕbv) + b(aux ϕv) + ϕ(a, b)(ux ϕv)

where ϕ : R.X ⊗ R.X → R.X is some associative law.

aas shuffle, stuffle, infiltration, q-infiltration.
G.H.E. Duchamp, J.-Y. Enjalbert, H. N. Minh, C. Tollu, The mechanics of
shuffle products and their siblings, Discrete Mathematics, 340 (Sep. 2017)
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Examples of x ϕ
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One can see the product ux ϕv as a sum indexed by paths (with
right-up-diagonal(ne) steps) within the grid formed by the two words (u
horizontal and v vertical, the diagonal steps corresponding to the factors
ϕ(a, b))

•
A

•B

y3 y2 y5

y2

y1

.

For example,

the path

•
A

•B

y3 y2 y5

y2

y1

reads ϕ(y3, y2)y2y5y1

39 / 73



40/73

the path

•
A

•B

y3 y2 y5

y2

y1

reads y3ϕ(y2, y2)ϕ(y5, y1). We have

the following

Theorem (Radford theorem for x ϕ)

Let R be a Q-algebra (associative, commutative with unit) such that

ϕ : R〈X 〉 ⊗ R〈X 〉 → R〈X 〉

is associative.
If X is totally ordered by <, then (Lyn(X )xϕα)α∈N(Lyn(X )) is a linear

basis of R〈X 〉.
In particular if, moreover, ϕ is commutative, then (R〈X 〉, x ϕ, 1X∗) is a

polynomial algebra with Lyn(X ) as a transcendence basis.
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Dualizability

If one considers ϕ as defined by its structure constants

ϕ(x , y) =
∑
z∈X

γzx ,y z

one sees at once that x ϕ is dualizable within R〈X 〉 iff the tensor γzx ,y is
locally finite in its contravariant place “z” i.e.

(∀z ∈ X )(#{(x , y) ∈ X 2|γzx ,y 6= 0} < +∞) .

Remark

Shuffle, stuffle, infiltration are dualizable. The comultiplication associated
with Generalized Lerch Functions and > are not (see HNM’s talk).
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Dualizability/2

In case x ϕ is dualizable, one has a comultiplication

∆xϕ : R〈X 〉 → R〈X 〉 ⊗ R〈X 〉

(with structure constants the transpose of the tensor γzx ,y ). The following

B∨ϕ = (R〈X 〉, conc , 1X∗ ,∆xϕ , ε) (28)

is a bialgebra in duality with Bϕ (not always a Hopf algebra although the
letter was so → ex. x ϕ =↑q i.e. the q-infiltration).
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Associative commutative ϕ-deformed shuffle products

Theorem (CAP 2015)

Let us suppose that ϕ is associative and dualizable. We still denote the dual law
of x ϕ by ∆xϕ

: R〈Y 〉 −→ R〈Y 〉 ⊗ R〈Y 〉, B∨ϕ := (R〈Y 〉, conc, 1Y ∗ ,∆xϕ
, ε) is

a bialgebra. Moreover, if ϕ is commutative the following conditions are equivalent

i) B∨ϕ is an enveloping bialgebra. (CQMM theorem)

ii) B∨ϕ is isomorphic to (R〈Y 〉, conc, 1Y ∗ ,∆x , ε) as a bialgebra.

iii) ∆+ is locally nilpotent (i.e. ϕ is moderate).

iv) For all y ∈ Y , the following series is a polynomial.

π1(y) = y +
∑

l≥2
(−1)l−1

l

∑
x1,...,xl∈Y 〈y | ϕ(x1 . . . xl)〉 x1 . . . xl .

In the previous equivalent cases, ϕ is called moderate.
In this case, one can straighten the x ϕ product and imitate Lyndon basis
computation in order to get a basis of the primitive elements and then have an
effective calculus for Schützenberger factorisation.
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Bialgebra structure

Theorem

Let R be a commutative ring (with unit). We suppose that the product ϕ
is associative, then the algebra (R〈X 〉, x ϕ, 1X∗) can be endowed with the
comultiplication ∆conc dual to the concatenation

∆conc(w) =
∑
uv=w

u ⊗ v (29)

and the “constant term” character ε(P) = 〈P | 1X∗〉.
(i) With this setting, we have a bialgebra a.

Bϕ = (R〈X 〉, x ϕ, 1X∗ ,∆conc , ε) (30)

(ii) The bialgebra (eq. 30) is, in fact, a Hopf Algebra.

aWhen |X | ≥ 2, noncocommutative.
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The I+ technology.

6 We have the following theorem
Theorem. — Let B = (B, µ, 1B,∆, ε) be a bialgebra, then

A) B = ker(ε)⊕ k.1B and the projectors are
i) h 7→ I+(h) = h − ε(h).1B on ker(ε) = B+.
ii) h 7→ e(h) = ε(h).1B on k.1B.
B) If I+ is locally nilpotent i.e.

(∀b ∈ B)(∃N ≥ 0)(∀n ≥ N)(I ∗ n+ (b) = 0) (31)

then B is a Hopf algebra.
C) (CQMM) If Q ⊂ k and ∆ is cocommutative, then TFAE
i) B is an enveloping bialgebra.
ii) B = U(Prim(B)).
iii) ∆+ = I⊗ 2

+ ◦∆ is locally nilpotent.
iv) I+ is locally nilpotent.
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CQMM: examples and counterexamples.

7 Let k be a ring, S be a subsemigroup of N and, for s ∈ S ,
∆ (ys) :=

∑
p+q=s yp ⊗ yq, then

B = B = (k〈Y 〉, conc, 1Y ∗ ,∆ , ε) (32)

is a bialgebra.

i) If S = N≥1 (classical stuffle) and k = Z B is not an enveloping
algebra.

ii) With S = N and even k = Q (we called this alphabet Y0 in the Ph.
D’s), B is not even a Hopf algebra.

8 Remarks. —
i) (Weak form of the CQMM) With Q ⊂ k and B, connected, graded and

cocommutative.
Rq. — This, strictly weaker, form doesn’t cover classical enveloping
algebras as U(sl2(k)).

ii) In the equivalent conditions of CQMM, log(I ) = log(e + I+) is the π1

projector B → Prim(B).
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Enveloping algebras in context.

1 Let Cleft , Cright be two categories and F : Cright → Cleft a (covariant) functor
between them

Cleft Cright

U V

Free(U)

F

f

jU f̂

Figure: A solution of the universal problem w.r.t. the functor F is the datum, for
each U ∈ Cleft , of a pair (jU ,Free(U)) (with jU ∈ Hom(U,F [Free(U)]),
Free(U) ∈ Cright).(
∀f ∈ Hom(U,F [V ])

)(
∃! f̂ ∈ Hom(Free(U),V )

)(
F (f̂ ) ◦ jU = f

)
2 In the case of enveloping algebras Cleft = k− Lie, Cright = k− AAU and

F (A) is the algebra A endowed with the bracket [x , y ] = xy − yx thus a Lie
algebra.
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Limiting processes and topologies

1 We have seen last time some limiting processes (like Riemann integral
and Lebesgues y -axis sampling) which are not reducible to sequences,
(we will return to this point later on).

2 In order to understand deeply and master our calculations with
group-like series (of all sorts not only for the co-shuffle coproduct),
we have to deal with closed subgroups of the Magnus group.

3 Let us first examine and analyse some simple limits of sequences of
series.

4 We first address the following identity

lim
n→+∞

(1 +
z

n
)n = ez (33)

Which can be considered within the formal realm (i.e. LHS, for each
n, within C〈z〉 = C[z ] and RHS within C〈〈z〉〉 = C[[z ]]) or in H(C)
with compact convergence.
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x

y

f1(x)
f2(x)
f3(x)

f5(x)

f (x)

︸ ︷︷ ︸
Compact convergence.

Figure: The one-parameter group f (x) = e
x
2 as the limit of fn(x) = (1 + x/(2n))n.
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Limiting processes and topologies/2

5 In fact, a variant of (33)a was used by Montgomery and Zippin to solve
Hilbert’s fifth problem [?].

6 (Informal) definition:b A one-parameter group, is a correspondence G to
some group such that

G (t1 + t2) = G (t1)G (t2)

7 In fact, we are interested in creating a new theory of

1 Paths drawn on groups of series
2 One-parameter groups on infinite-dimensional Lie groups of series and

their combinatorics.
3 We use an application to stuffle identity, introducing a “Holomorphic

functional calculus” [22] in order to get and prove non-trivial identities
within Hausdorff groups.

aIn fact, the construction of one-parameter groups as limits of this kind.
bInformal, means here “at the level of general idea”.
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Every path drawn on the group is a solution of
y ′(t) = m(t)y(t)

Lie Group G

L(G ) (Lie algebra)

y(t)

y(t)

c

y ′(t)

Figure: For one-parameter groups y ′(t)y(t)−1 = c is constant.
51 / 73



52/73

An identity in the stuffle algebra

8 We begin by an application on the Hausdorff group of a particular bialgebra.
Here, with Y = {yi}i≥1

B = B = (C〈Y 〉, conc, 1Y ∗︸ ︷︷ ︸
algebra part

,∆ , ε) (34)

and we first establish an identity within the stuffle algebra, taking “stars of
the plane” as arguments.

(
∑
i≥1

αi yi )
∗ (

∑
j≥1

βj yj)
∗ = (

∑
i≥1

αi yi +
∑
j≥1

βj yj +
∑
i,j≥1

αiβj yi+j)
∗ (35)

As the alphabet is infinite, we use here homogeneous series of degree one as∑
i≥1 αi yi . These sums are not necessarily finite (they are, in general, a

series) but can be so. Series like this form the vector space CY (called by

Pr. Schützenberger “the plane of letters”), noted, in our works, Ĉ.Y as it is
the completion of C.Y = C(Y ) for some topology.
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An identity in the stuffle algebra/2: Generalities

9 In fact, identity (35) describes completely the composition of characters (i.e.
the composition within Ξ(B)). In fact B (see its elements in eq. 34) is a
conc-bialgebra and conc-characters are exactly “stars of the plane” i.e., for
generic X , of the form (

∑
x∈X αx x)∗.

10 We recall that ∆ (yn) = yn ⊗ 1 + 1⊗ yn +
∑

p,q≥1
p+q=n

yp ⊗ yq.

11 In fact this comultiplication is a particular case of ∆xϕ
comultiplications

which read, for each letter x ∈ X (see [?]),

∆xϕ(x) = x ⊗ 1 + 1⊗ x +
∑

y ,z∈X
γy ,zx y ⊗ z (36)

where the tensor γy ,zx is locally finite in x .

12 For these conc-bialgebras, we have in general

(
∑
y∈X

αy y)∗x ϕ(
∑
z∈X

βz z)∗ = (
∑
y∈X

αy y +
∑
z∈X

βz z +
∑

x,y ,z∈X
αyβz γ

y ,z
x x)∗

(37)53 / 73
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An identity in the stuffle algebra/3: Generalities

13 One proof of (37) rests on the fact that the algebra is generated by X and,
then, we have just, knowing the form of the LHS-RHS, to test equality on
letters. Let us recall some definitions and properties (k is a commutative
ring)

1 Let B = (B, µ, 1B,∆, ε) be a bialgebra.
2 We call Ξ(B) the set of characters of (B, , µ, 1B) (with values in k)
3 When C is another k-algebra, we will note Ξ(B; C), the set of

characters of B with values in C.a

14 One can show that, if C is commutative, characters compose through
convolution. Indeed, the dual B∨ (now C = k) is an algebra under t∆
(which will be noted ~) and Ξ(B) ⊂ B∨ is closed under ~.

aThis set is none other than the Hom-set of the algebras, i.e. we have truly

Ξ(B; C) = Hom
k−AAU(B, C)

but the point of view is commpletely different.
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An exercise about these generalities

15 Let k be a commutative ring and B = (B, µ, 1B,∆, ε) be a k-bialgebra. As
∆ : B B ⊗ B, we have t∆ : (B ⊗ B)∨ B∨

16 (Q1) Explain the arrow

can : B∨ ⊗ B∨ (B ⊗ B)∨ (38)

and prove that t∆ ◦ can is a law of k−AAU in B∨ (we will note this law ~).

17 (Q2) i) Let C be a k−CAAU, prove that Ξ(B) is a submonoid of (B∨,~, ε).
ii) Extend these results to Ξ(B; C) (where C is an object of k− CAAU).

18 (Q3) i) For t ∈ C, compute (2ty1 + t2y2)∗ under the form of an exponential.
ii) Recall that “Stars of the plane” are conc-characters and prove that, for
t 6= 0, (y∗1 , (2ty1 + t2y2)∗, y∗3 ) are algebraically independent over
(C〈Y 〉, , 1Y ∗) within (C〈〈Y 〉〉, , 1Y ∗).

iii) More generally, prove that, if Qi ∈ Ĉ.Y are Z-linearly independent, then
(Q∗i )i∈I are algebraically independent.
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Exercise (cont’d)

19 Before proving the (very hard) question (iii) of exercise 18 above let us give
a bit of a categorical motivation.

20 H(Ω) is a C-vector space, in fact a C− CAAU (and hence all derived
substructures: monoid and the like). Then, if one has a correpondence (a
set-theoretical map)

Φset : X H(Ω) (39)

(be it for “inputs” or everything else, arbitrary) one can extend it to C〈X 〉
as we do for αz

z0
, Θ, . . .. One gets at once an extension

ΦC−AAU : C〈X 〉 H(Ω) (40)

21 The question will be addressed next time will be to extend (40) to (certain)
series.

22 On the RHS of (40), we have a space with a topology (apparently, the only
reasonable one, see [26]). On the LHS, there are several topologies.
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An algebraic one-parameter group for stuffles/1

23 (Holomorphic functional calculus [22]) Let S ∈ C+〈〈Y 〉〉 (sometimes
called ”a proper series”) and T =

∑
n≥0 anz

n ∈ C[[z ]], we first
remark that (anS

n)n≥0 is “summable” (see definition below,
equation (41) and use the weight).

Definition

A family of series (Si )i∈I in k〈〈X 〉〉 is said summable if, for all w ∈ X ∗, the
map i 7→ 〈Si | w〉 is finitely supported. In this case the sum of the family
is defined by ∑

i∈I
(Si ) :=

∑
w∈X ∗

∑
i∈I
〈Si | w〉w (41)

24 For T ∈ C[[z ]] and S ∈ C+〈〈Y 〉〉, we note

T (S) :=
∑
n≥0

〈T | zn〉 S n (42)
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An algebraic one-parameter group for stuffles/2

25 For S ∈ C+〈〈Y 〉〉, we have

log (1Y ∗ + S) exp (S)− 1Y ∗ belong to C+〈〈Y 〉〉 and (43)

exp (log (1Y ∗ + S)) = 1Y ∗ + S log (exp (S)) = S(44)

26 (Commutation and polynomial type coefficients) For S ,T ∈ C+〈〈Y 〉〉
and P(z) ∈ C[z ], we have

exp (S + T ) = exp (S) exp (T ) and (45)

exp (P(z).S) ∈ C[z ]〈〈Y 〉〉 ; (46)

d

dz
(exp (P(z).S)) = (P ′(z).S) exp (P(z).S) (47)
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An algebraic one-parameter group for stuffles/3

27 Now, we code “the plane” by Umbral calculus.

28 Let x be an auxiliary letter, The map

πUmbra
Y :

∑
n≥1

αn x
n 7→

∑
n≥1

αn yn (48)

from C+[[x ]] to Ĉ.Y is linear and bijective. We will call πUmbra
x its

inverse.

29 For S ,T ∈ C+[[x ]], one can show that

(πUmbra
Y (S))∗ (πUmbra

Y (T ))∗ = (πUmbra
Y ((1 + S)(1 + T )− 1))∗ (49)

30 Therefore, for z ∈ C and T ∈ C+[[x ]], one sets

G (z) = (πUmbra
Y (ez.T − 1))∗ (50)
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An algebraic one-parameter group for stuffles/4

31 From (49), (47) and (35) one gets, for z1, z2 ∈ C,

G (z1 + z2) = G (z1) G (z2) ; G (0) = 1Y ∗ (51)

(then G can truly be called a “stuffle one parameter group”).

32 We check that
d

dz
(G (z)) = (πUmbra

Y (T )) G (z) (52)

and deduce that
G (z) = e

z.πUmbra
Y (T )

(53)

33 What precedes shows us that, for each P =
∑

i≥1〈P | yi 〉 yi ∈ Ĉ.Y

log (P∗) = πUmbra
Y (log(1 + πUmbra

x (P))) (54)
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An algebraic one-parameter group for stuffles/5

34 In particular, using (54), we show that

(tyk)∗ = exp
(∑

n≥1

(−1)n−1tnynk
n

)
(55)
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Limiting processes and topologies/3

35 Our first examples are taken in C[[z ]] = C〈〈z〉〉.
36 First, we return to S∗ (S is without constant term) and (1 + z

n )n.

37 In the first case, calling ω(S) the minimal length of supp(S) (and still
supposing 〈S | 1X∗〉 = 0) we have ω(Sn) ≥ n and then (Sn)n≥0 is summable.

38 In the second one, one has

(1 +
z

n
)n = 1 + z +

(n)(n − 1)

n2
z2 + . . . = 1 + z +

(n − 1)

n
z2 + . . . (56)

the series of differences Tn = (1 + z
n+1 )n+1 − (1 + z

n )n is NOT summable as

Tn = 1
n(n+1)z

2 + . . . and then for all n ∈ N, ω(T n) = 2. What happens in

fact is that, for all N ∈ N,

limn→∞〈(1 + z
n )n | zN〉 =

1

N!
so that, even if the series of differences is not summable, the limit exists.
This term-by-term topology (which is the product topology) is called
“Treves Topology” in [14] (see [38] Ch10 Example III).
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Concluding remarks.

1 Extending the domain of polylogarithms to (some) rational series
permits the projection of rational identities. Such as

(αx)∗x (βy)∗ = (αx + βy)∗

2 The theory developed here allows to pursue, for the Harmonic sums,
this investigation such as

(αyi )
∗ (βyj)

∗ = (αyi + βyj + αβyi+j)
∗

3 We have, on the left, spaces equipped with Krull ultrametric
convergence and a nice setting on the (topological) Magnus and
Hausdorff groups. On the right, we have adapted domain theories
with identities between polylogarithms and harmonic sums.

4 We have discussed general CQMM and its consequences for MRS.
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